2025.11.12 (수)

  • 맑음동두천 17.1℃
  • 맑음강릉 17.7℃
  • 맑음서울 17.7℃
  • 구름많음대전 14.8℃
  • 흐림대구 13.9℃
  • 흐림울산 15.9℃
  • 흐림광주 13.1℃
  • 흐림부산 16.0℃
  • 흐림고창 13.1℃
  • 흐림제주 16.8℃
  • 맑음강화 14.2℃
  • 흐림보은 14.7℃
  • 흐림금산 14.5℃
  • 흐림강진군 14.4℃
  • 흐림경주시 15.1℃
  • 흐림거제 14.6℃
기상청 제공

수술 없이 치료도 되는 유연 초음파 센서 기술 개발

웨어러블 의료기기와 수술 없이 초음파로 치료까지 가능한 비침습적 차세대 의료기술 발전 기대
자유롭게 곡률 구현할 수 있는 ‘Flex-to-Rigid(FTR) 구조’의 초음파 트랜스듀서(센서, CMUT) 제작
수술이나 절개 없이 신경과 장기 자극해 염증 완화하는 비침습적 치료에 활용될 수 있음 검증
KAIST 전기및전자공학부 이현주 교수 연구팀

기존의 몸에 부착해 사용하는 초음파 센서는 출력 세기가 약하고 구조가 쉽게 변형돼, 고해상도 영상이나 치료 목적으로 활용하기 어려웠다. KAIST 연구팀이 이러한 한계를 극복하고 곡률(휘어진 정도)을 자유롭게 조절할 수 있는 유연 초음파 센서 기술을 개발했다. 이번 성과는 몸에 밀착해 정확한 영상을 얻는 웨어러블 의료기기와 수술 없이 초음파로 치료까지 가능한 비침습적 차세대 의료기술의 발전 가능성을 크게 높였다.

 

KAIST은 전기및전자공학부 이현주 교수 연구팀이 반도체 웨이퍼 공정(MEMS)을 활용해 유연함부터 단단함까지 자유롭게 구현할 수 있는 ‘Flex-to-Rigid(FTR) 구조’의 초음파 트랜스듀서(센서, CMUT)를 제작했다고 12일 밝혔다.

 

▲(왼쪽부터) 이현주 교수, 이상목 박사, 샤오지아 량 박사과정

 

연구팀은 저온에서 녹는 금속(저융점 합금, LMPA)을 소자 내부에 삽입해, 전류를 가하면 금속이 녹아 자유롭게 형태를 바꾸고, 냉각 시 다시 고체로 굳어 원하는 곡면 형태로 고정할 수 있는 기술을 구현했다.

 

기존의 고분자(폴리머) 막 기반 초음파 센서(CMUT)는 낮은 탄성계수(딱딱함)로 인해 충분한 음향 에너지를 발생시키지 못하고, 진동 시 초점이 흐려지는 문제가 있었다. 또한 곡률 조절이 어려워 목표 위치에 정밀하게 초점을 맞추기 힘든 한계가 있었다.

 

이현주 교수 연구팀은 단단한 실리콘 기판에 유연한 엘라스토머(고무 유사 물질) 브리지를 결합한 FTR 구조를 고안해 높은 출력 성능과 유연성을 동시에 확보했다. 내부의 저융점 합금은 전류에 의해 고체와 액체 상태를 오가며, 소자의 형태를 자유롭게 조정하고 고정할 수 있도록 돕는다.

 

그 결과, 초음파가 한 점으로 모이도록 전자적으로 신호를 제어하는 ‘별도의 빔 조정’ 과정 없이도 이번에 개발한 센서로 기계적으로 모양(곡률)에 맞추어 초점을 자동으로 형성하기 때문에 특정 부위에 정밀한 초음파 초점을 형성할 수 있었으며, 반복적인 굽힘에도 안정적인 전기·음향 특성이 유지됨을 확인했다.

 

이 센서의 출력은 조직을 손상시키지 않고 특정 부위를 부드럽게 자극해 치료 효과를 내는 초음파 기술인 ‘저강도 집속 초음파(LIFU)’ 수준 이상으로, 수술이나 절개 없이 신경과 장기를 자극해 염증을 완화하는 비침습적 치료에 활용될 수 있음이 검증됐다.

 

연구팀은 이 소자를 동물 모델에 적용해 비장(spleen)을 비침습적으로 자극하는 실험을 수행했으며, 그 결과 관절염 모델에서 염증이 완화되고 보행이 개선되는 치료 효과를 확인했다.

 

향후에는 한줄(1차원)이 아닌 많은 초음파 센서를 평면 위에 바둑판처럼 배열한 구조인 ‘2차원 배열 소자’ 개발을 통해 고해상도 초음파 영상과 치료를 동시에 구현하는 스마트 의료 기술로 발전시킬 계획이다.

 

또한 이 기술은 반도체 공정과 호환돼 대량 생산이 가능하므로, 웨어러블 및 재택 의료용 초음파 시스템으로 확장될 전망이다.

 

이번 연구에는 전기및전자공학부 이상목 박사와 샤오지아 량(Xiaojia Liang) 박사과정이 공동 제1저자로 참여했으며, 연구 결과는 국제 학술지 네이처 파트너 저널 플렉서블 일렉트로닉스(npj Flexible Electronics, IF 15.5)에 10월 23일 자 온라인판으로 게재됐다.
 

과학기술정보통신부 바이오‧의료기술개발사업(뇌과학 선도융합기술개발사업)과 범부처전주기의료기기연구개발사업단의 지원을 받아 수행됐다.

 

그림 1. Flex-to-rigid(FTR) CMUT의 설계와 응용

 

그림 2. Joule heating을 통한 저융점 합금(LMPA) 상변화를 기반으로 한 FTR CMUT의 곡률 조절

 


배너